џндекс.Њетрика
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я

Интегральное исчисление

интегра́льное исчисле́ние, раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения к решению различных математических, физических и других задач. В систематической форме интегральное исчисление было предложено в XVII в. И. Ньютоном и Г. Лейбницем. Интегральное исчисление тесно связано с дифференциальным исчислением; интегрирование (нахождение интеграла) есть действие, обратное дифференцированию: по данной непрерывной функции f(x) ищется функция F(x) (первообразная), для которой f(x) является производной. Вместе с(х) первообразной функцией для f(x) является и f(x) + С, где С — любая постоянная. Общее выражение F(х) + С первообразных непрерывной функции f(x) называется неопределённым интегралом; он обозначается
∫f(x)dx = F(х) + С.Определённым интегралом непрерывной функции f(х) на отрезке [а, b], разделённом точками x1, х2,..., xn-1, называется предел интегральных сумм , где Δхi = xi – xi-1, при условии, что наибольшая разность Δxi стремится к нулю и число точек деления неограниченно увеличивается; его обозначают (самый знак  ∫ возник из первой буквы S латинского слова Summa). Через определённые интегралы выражаются площади плоских фигур, длины кривых, объёмы и поверхности тел, координаты центров тяжести, моменты инерции, работа, производимая данной силой, и т. д. О связи между определённым интегралом и первообразной см. Ньютона—Лейбница формула. Понятие интеграла распространяется на функции многих переменных (см. Кратный интеграл, Криволинейный интеграл, Поверхностный интеграл).
 
Рейтинг@Mail.ru